Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Indian J Pediatr ; 2010 Apr; 77(4): 431-433
Article in English | IMSEAR | ID: sea-142553

ABSTRACT

Congenital myopathies are a group of genetic disorders characterized by generalised muscle hypotonia and weakness of varying severity. They are distinct entities and do not include muscular dystrophies, metabolic myopathies and mitochondrial disorders. Myotubular myopathy is a rare sub type within this group of disorders. Clinical differentiation of the various types is difficult and requires muscle biopsy with histopathological and immunohistochemical studies for specific diagnosis. Gene studies are a prerequisite for genetic counseling adn prenatal diagnosis. Here presented three cases of X-linked myotubular myopathy in three Indian families where the diagnosis was established by mutation analysis in the MTM1 gene in all, and supported his histopathology in two. All three families had history of previous male neontal deaths with similar complaints. Molecular analysis revealed hemizygous mutations in the MTM1 gene including c.1261-10A>G in case, 1, c.70C>T (R24X) in case 2, and a previously unreported mutation, c.924_926delCTT(p. F308del), in case 3. Genetic counseling was performed regarding the X-linked inheritance, their 50% risk of recurrence in boys in subsequent pregnancies, and a feasibility of prenatal diagnosis. This is the first report of cases of X-linked Myotubular myopathy from India.


Subject(s)
Genetic Diseases, X-Linked/genetics , Humans , Infant, Newborn , Male , Muscle, Skeletal/pathology , Mutation , Myopathies, Structural, Congenital/diagnosis , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/pathology , Protein Tyrosine Phosphatases, Non-Receptor/genetics
2.
Neurol India ; 2008 Jul-Sep; 56(3): 289-97
Article in English | IMSEAR | ID: sea-121538

ABSTRACT

Dysferlinopathies encompass a large variety of neuromuscular diseases characterized by the absence of dysferlin in skeletal muscle and an autosomal recessive mode of inheritance. So far, three main phenotypes have been reported: Miyoshi myopathy (MM), limb girdle muscular dystrophy type 2B (LGMD 2B), and distal myopathy with anterior tibial onset (DMAT). A growing number of clinical variants have recently been described with a much wider range of symptoms and onset. Although rare, dysferlinopathies can account for up to 30% of progressive recessive muscular dystrophies in certain geographical areas, notably in the Middle East and the Indian subcontinent. Dysferlin is a large protein involved in membrane repair and vesicle trafficking and interacts probably with important immunological pathways. New insights in its pathophysiology may result in innovative therapies in the near future.

SELECTION OF CITATIONS
SEARCH DETAIL